

Home Search Collections Journals About Contact us My IOPscience

Ab initio study of M_2AIN (M = Ti,V,Cr)

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2005 J. Phys.: Condens. Matter 17 L15

(http://iopscience.iop.org/0953-8984/17/2/L02)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 129.252.86.83 The article was downloaded on 27/05/2010 at 19:43

Please note that terms and conditions apply.

J. Phys.: Condens. Matter 17 (2005) L15-L19

doi:10.1088/0953-8984/17/2/L02

LETTER TO THE EDITOR

Ab initio study of M_2 AlN (M = Ti, V, Cr)

Zhimei Sun^{1,4}, Denis Music¹, Rajeev Ahuja² and Jochen M Schneider^{1,3}

¹ Materials Chemistry, RWTH Aachen, Kopernikusstrasse 16, D-52074 Aachen, Germany

² Department of Physics, Condensed Matter Theory Group, Uppsala University, Box 530,

S-751 21 Uppsala, Sweden

³ Department of Physics, Materials Physics, Uppsala University, Box 530, S-751 21, Uppsala, Sweden

E-mail: sun@mch.rwth-aachen.de

Received 7 October 2004, in final form 7 December 2004 Published 20 December 2004 Online at stacks.iop.org/JPhysCM/17/L15

Abstract

We have studied M₂AlN phases, where M = Ti, V, and Cr, by means of *ab initio* total energy calculations. The bulk modulus of M₂AlN increases as Ti is replaced with V and Cr by 19.0% and 26.5%, respectively, which can be understood on the basis of the increased number of valence electrons filling the p–d hybridized bonding states. The bulk modulus of M₂AlN is generally higher than that of the corresponding M₂AlC phase, which may be explained by an extra electron in the former phases contributing to stronger chemical bonding. This work is important for fundamental understanding of elastic properties of these ternary nitrides and may inspire future experimental research.

 M_2AX phases (space group $P6_3/mmc$, prototype Cr_2AlC), where M is an early transition metal, A is a group IIIA or IVA element, and X is either C or N, have attracted great attention due to their unusual properties associated with metals and ceramics (for details see [1] and the references cited therein). While there are approximately 50 experimentally known M_2AX phases, only a very limited number of M_2AN phases have been synthesized. In our previous paper [2], we have investigated the effect of valence electron population on bonding and elastic properties of M_2AlC phases, where M = Ti, V, and Cr, by means of *ab initio* total energy calculations. The bulk modulus of M_2AlC increases as Ti is replaced with V and Cr by 19% and 36%, respectively, which is associated with an extensive increase in the M–Al and M–C bond energy [2]. In this letter, using *ab initio* total energy calculations, we systematically study M_2AlN phases (M = Ti, V, Cr). Ti₂AlN has already been synthesized [1], while the other two phases have not been experimentally investigated. The main aim of this letter is to correlate the chemical bonding and elastic properties of M_2AlN phases as a function of valence electron population in order to gain insight into this fascinating class of materials.

0953-8984/05/020015+05\$30.00 © 2005 IOP Publishing Ltd Printed in the UK

⁴ Author to whom any correspondence should be addressed.

Table 1. The calculated lattice parameters *a* and *c* (in Å), equilibrium volume V_0 (Å³), energy of formation E_f (in eV/atom), bulk modulus *B* (in GPa), and optimized free internal parameters z(M) for M₂AlN, where M = Ti, V, and Cr.

	$E_{\rm f}$	а	С	V_0	В	$z(\mathbf{M})$
Ti ₂ AlN	-1.201	2.998	13.625	106.05	181	0.086
Exp. ^a		2.989	13.614	105.33		
Cal. ^b					175	
Cal. ^c					163	
V ₂ AlN	-0.823	2.866	13.166	93.65	215	0.086
Cr ₂ AlN	-0.375	2.847	12.689	89.07	229	0.082

^a Reference [13].

^b Reference [12].

^c Reference [9].

Our calculations are based on the density functional theory, using the VASP code [3], in conjunction with the generalized gradient approximations [4] and projector augmented wave potentials [5]. The calculation details have been given in previous letter [2]. The input structure for Ti_2AIN was from [6], while those of V_2AIN and Cr_2AIN were from V₂AlC [7] and Cr₂AlC [7], respectively, since neither of the two phases has been reported experimentally. The structures were first fully relaxed, i.e. the cell shape, volume, and atomic position were relaxed. We have also optimized the c/a ratios and the free internal parameters (z). The total energy was calculated at various cell volumes to obtain the equilibrium volume (V_0) and the bulk modulus (B) from a least-squares fit of the calculated V-E curves to the integrated form of the third-order Birch-Murnaghan equation of states [8]. In this letter we have assumed the paramagnetic configuration of Cr in Cr₂AlN, since the effect of spin polarization resulted in comparatively small differences in cohesive energy. The energy differences between antiferromagnetic and paramagnetic as well as ferromagnetic and paramagnetic configurations were 0.37 and -3.28 meV/atom, respectively. The total density of states (DOS) was obtained using the relaxed structures at V_0 . The energy of formation (E_f) was calculated using the following equation:

$$E_{\rm f}({\rm M}_2{\rm AlN}) = \frac{E({\rm M}_2{\rm AlN}) - 2E({\rm M}) - E({\rm Al}) - E({\rm N}_2)}{8},$$
(1)

where M designates a metal with Ti crystallizing in the hexagonal structure (space group $P6_3/mmc$, prototype Mg), V and Cr are body-centred cubic metals (space group $Im\overline{3}m$, prototype W), Al is a face-centred cubic metal (space group $Fm\overline{3}m$, prototype Cu), and N₂ is a gas. There are two atoms in the unit cell for every metal.

The calculated results are given in table 1, wherein the energy of formation, equilibrium volume, lattice parameters *a* and *c*, bulk modulus, and the optimized free internal parameters for M₂AlN, with M = Ti, V, and Cr, are listed. On the basis of the calculated energy of formation, it appears that these three phases may be observed experimentally. Furthermore, the values of C₄₄ for V₂AlN and Cr₂AlN, which were calculated to be 158 and 128 GPa respectively, indicate that these structures may be stable against shear deformation. Among the herein investigated M₂AlN phases, only Ti₂AlN has been studied both theoretically [9–12] and experimentally [12, 13]. The calculated equilibrium volumes of Ti₂AlN are in agreement with the experimental result [13], differing by 0.7%. In terms of the bulk modulus for Ti₂AlN, the deviation is within 3.3% and 9.9%, respectively [9, 12], which is due to the different calculation methods. The bulk modulus increases by 19.0% and 26.5% as Ti is replaced with V and Cr. For comparison, figure 1 shows the calculated bulk modulus for both M₂AlN and M₂AlC [2, 14, 15], where M = Ti, V, and Cr. The behaviour of the bulk modulus of M₂AlN

Figure 1. The calculated bulk modulus (*B*) for M_2AIN (M = Ti, V, and Cr). The previous results [2] for M_2AIC are included for comparison.

Figure 2. Charge density distribution in the (11 $\overline{2}$ 0) plane for (a) Ti₂AlN and (b) Ti₂AlC. The density values vary from 0 (white) to 3.5 electron Å⁻³ (dark grey).

is similar to that of the bulk modulus of M_2AIC [2], and the magnitude of the bulk modulus of M_2AIN ranges from 8.3% to 1.3%, higher than that of the M_2AIC phase, as Ti is replaced with V and Cr. This indicates that an extra electron in the M_2AIN phases may contribute to stronger chemical bonding and thus larger bulk moduli than that of the corresponding M_2AIC phase. This is consistent with the comparison of the charge density distribution in the (1120) plane as shown in figure 2(a) for Ti₂AIN and figure 2(b) for Ti₂AIC. As C is replaced with N, the uniform charge density region between the MX layers is extended, which may be responsible for the larger bulk modulus, as discussed above.

Figure 3. The total density of states of M_2AIN (M = Ti, V, and Cr), where the Fermi level is set to zero and marked by a vertical dashed line.

In order to gain better understanding of the chemical bonding in M_2 AlN, we have calculated the total DOS (see figure 3). The total DOS of Ti2AIN agrees qualitatively with that given in [9]. The Fermi level moves from a lower energy level to a higher energy level with the substitution of the transition metal Ti with V and with Cr, which indicates that the increased extra valence electrons fill the p-d hybridized bonding states of M-Al and M-N. This band filling is responsible for the increase of the bulk modulus. The Fermi levels of Ti₂AlN and V₂AlN are located in pseudogaps (see figure 3), which are similar to those for Ti₂AlC [2] and V_2AIC [2], respectively. The Fermi level of Cr_2AIN (see figure 3) is positioned at a DOS peak, unlike the case for Cr_2AlC [2], suggesting that Cr_2AlN may have the lowest stability of the three herein investigated phases. This is consistent with the energy of formation given in table 1. The calculated number of states at the Fermi level is \sim 2.6 and \sim 4.2 states/cell for Ti₂AlN and V₂AlN, respectively, which is less than that for Ti₂AlC (\sim 3.2 states/cell) [2] and that for V₂AlC (\sim 4.7 states/cell) [2]. The result from the calorimetric measurements [12] at liquid He temperatures for Ti₂AlN is 2.69 states/cell, rather close to our calculated value. Fewer states at the Fermi level for both Ti₂AlN and V₂AlN, as compared to the corresponding carbides, and the fact that the Fermi level is located in a pseudogap may contribute to stronger chemical bonding and hence result in larger bulk moduli. In the case of Cr₂AlN, the number of states at the Fermi level is ~ 10.9 states/cell, but due to the above-discussed misalignment, more electrons are likely to occupy non-bonding states. On the other hand, these extra states in Cr₂AlN may also contribute to conduction of electrons and heat, a well-known feature of MAX phases [1].

In summary, we have studied M_2AIN , where M = Ti, V, and Cr, using *ab initio* total energy calculations. The bulk modulus of M_2AIN increases as Ti is replaced with V and Cr by 19.0% and 26.5%, respectively. This can be understood on the basis of the increased number of valence electrons filling the p–d hybridized bonding states. Furthermore, the bulk modulus of M_2AIN is higher than that of the corresponding M_2AIC phase, which may be explained by there being an extra electron in these nitrides, contributing to stronger chemical bonding. This work is important for basic understanding of elastic properties of these phases and may encourage future experimental research.

We acknowledge support from VR. JMS also acknowledges sponsorship from the Alexander von Humboldt Foundation, the Federal Ministry of Education and Research and the Programme for Investment in the Future.

References

- [1] Barsoum M W 2000 Prog. Solid State Chem. 28 201
- [2] Sun Z, Ahuja R, Li S and Schneider J M 2003 Appl. Phys. Lett. 83 899
- [3] Kresse G and Hafner J 1993 Phys. Rev. B 48 13115
- [4] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
- [5] Kresse G and Hafner J 1994 Phys. Rev. B 49 14251
- [6] Jeitschko W, Nowotny H and Benesovsky F 1963 Monatsh. Chem. 94 1198
- [7] Jeitschko W, Nowotny H and Benesovsky F 1963 Monatsh. Chem. 94 672
- [8] Birch F 1978 J. Geophys. Res. 83 1257
- [9] Holm B, Ahuja R, Li S and Johansson B 2002 J. Appl. Phys. 91 9874
- [10] Zhou Y C and Sun Z M 2000 Phys. Rev. B 61 12570
- [11] Hug G and Fries E 2002 Phys. Rev. B 65 113104
- [12] Lofland S E, Hettinger J D, Harrell K, Finkel P, Gupta S, Barsoum M W and Hug G 2004 Appl. Phys. Lett. 84 508
- [13] Gamarhik M Y, Barsoum M W and El-Raghy T 2000 Powder Diff. 15 241
- [14] Sun Z, Li S, Ahuja R and Schneider J M 2004 Solid State Commun. 129 589
- [15] Sun Z, Music D, Ahuja R, Li S and Schneider J M 2004 Phys. Rev. B 70 092102